Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato.

Identifieur interne : 000035 ( Main/Exploration ); précédent : 000034; suivant : 000036

The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato.

Auteurs : Nicholas C. Thomas [États-Unis] ; Connor G. Hendrich [États-Unis] ; Upinder S. Gill [États-Unis] ; Caitilyn Allen [États-Unis] ; Samuel F. Hutton [États-Unis] ; Alex Schultink [États-Unis]

Source :

RBID : pubmed:32391034

Abstract

Xanthomonas species, Pseudomonas syringae and Ralstonia species are bacterial plant pathogens that cause significant yield loss in many crop species. Generating disease-resistant crop varieties can provide a more sustainable solution to control yield loss compared to chemical methods. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant Nicotiana benthamiana and mediates perception of the effector proteins XopQ and HopQ1 from Xanthomonas and P. syringae respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of Xanthomonas and P. syringae. A homolog of XopQ/HopQ1, named RipB, is present in most Ralstonia strains. We found that Roq1 confers immunity to Xanthomonas, P. syringae, and Ralstonia when expressed in tomato. Strong resistance to Xanthomonas perforans was observed in three seasons of field trials with both natural and artificial inoculation. The Roq1 gene can therefore be used to provide safe, economical, and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.

DOI: 10.3389/fpls.2020.00463
PubMed: 32391034
PubMed Central: PMC7192161


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens
<i>Xanthomonas</i>
,
<i>Pseudomonas syringae</i>
, and
<i>Ralstonia</i>
in Tomato.</title>
<author>
<name sortKey="Thomas, Nicholas C" sort="Thomas, Nicholas C" uniqKey="Thomas N" first="Nicholas C" last="Thomas">Nicholas C. Thomas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fortiphyte Inc., Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fortiphyte Inc., Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hendrich, Connor G" sort="Hendrich, Connor G" uniqKey="Hendrich C" first="Connor G" last="Hendrich">Connor G. Hendrich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<affiliation wicri:level="2">
<nlm:affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Allen, Caitilyn" sort="Allen, Caitilyn" uniqKey="Allen C" first="Caitilyn" last="Allen">Caitilyn Allen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hutton, Samuel F" sort="Hutton, Samuel F" uniqKey="Hutton S" first="Samuel F" last="Hutton">Samuel F. Hutton</name>
<affiliation wicri:level="2">
<nlm:affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schultink, Alex" sort="Schultink, Alex" uniqKey="Schultink A" first="Alex" last="Schultink">Alex Schultink</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fortiphyte Inc., Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fortiphyte Inc., Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32391034</idno>
<idno type="pmid">32391034</idno>
<idno type="doi">10.3389/fpls.2020.00463</idno>
<idno type="pmc">PMC7192161</idno>
<idno type="wicri:Area/Main/Corpus">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000134</idno>
<idno type="wicri:Area/Main/Curation">000134</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000134</idno>
<idno type="wicri:Area/Main/Exploration">000134</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens
<i>Xanthomonas</i>
,
<i>Pseudomonas syringae</i>
, and
<i>Ralstonia</i>
in Tomato.</title>
<author>
<name sortKey="Thomas, Nicholas C" sort="Thomas, Nicholas C" uniqKey="Thomas N" first="Nicholas C" last="Thomas">Nicholas C. Thomas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fortiphyte Inc., Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fortiphyte Inc., Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hendrich, Connor G" sort="Hendrich, Connor G" uniqKey="Hendrich C" first="Connor G" last="Hendrich">Connor G. Hendrich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<affiliation wicri:level="2">
<nlm:affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Dakota State University, Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Allen, Caitilyn" sort="Allen, Caitilyn" uniqKey="Allen C" first="Caitilyn" last="Allen">Caitilyn Allen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hutton, Samuel F" sort="Hutton, Samuel F" uniqKey="Hutton S" first="Samuel F" last="Hutton">Samuel F. Hutton</name>
<affiliation wicri:level="2">
<nlm:affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schultink, Alex" sort="Schultink, Alex" uniqKey="Schultink A" first="Alex" last="Schultink">Alex Schultink</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fortiphyte Inc., Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fortiphyte Inc., Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Xanthomonas</i>
species,
<i>Pseudomonas syringae</i>
and
<i>Ralstonia</i>
species are bacterial plant pathogens that cause significant yield loss in many crop species. Generating disease-resistant crop varieties can provide a more sustainable solution to control yield loss compared to chemical methods. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant
<i>Nicotiana benthamiana</i>
and mediates perception of the effector proteins XopQ and HopQ1 from
<i>Xanthomonas</i>
and
<i>P. syringae</i>
respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of
<i>Xanthomonas</i>
and
<i>P. syringae</i>
. A homolog of XopQ/HopQ1, named RipB, is present in most
<i>Ralstonia</i>
strains. We found that Roq1 confers immunity to
<i>Xanthomonas</i>
,
<i>P. syringae</i>
, and
<i>Ralstonia</i>
when expressed in tomato. Strong resistance to
<i>Xanthomonas perforans</i>
was observed in three seasons of field trials with both natural and artificial inoculation. The
<i>Roq1</i>
gene can therefore be used to provide safe, economical, and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32391034</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens
<i>Xanthomonas</i>
,
<i>Pseudomonas syringae</i>
, and
<i>Ralstonia</i>
in Tomato.</ArticleTitle>
<Pagination>
<MedlinePgn>463</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00463</ELocationID>
<Abstract>
<AbstractText>
<i>Xanthomonas</i>
species,
<i>Pseudomonas syringae</i>
and
<i>Ralstonia</i>
species are bacterial plant pathogens that cause significant yield loss in many crop species. Generating disease-resistant crop varieties can provide a more sustainable solution to control yield loss compared to chemical methods. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant
<i>Nicotiana benthamiana</i>
and mediates perception of the effector proteins XopQ and HopQ1 from
<i>Xanthomonas</i>
and
<i>P. syringae</i>
respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of
<i>Xanthomonas</i>
and
<i>P. syringae</i>
. A homolog of XopQ/HopQ1, named RipB, is present in most
<i>Ralstonia</i>
strains. We found that Roq1 confers immunity to
<i>Xanthomonas</i>
,
<i>P. syringae</i>
, and
<i>Ralstonia</i>
when expressed in tomato. Strong resistance to
<i>Xanthomonas perforans</i>
was observed in three seasons of field trials with both natural and artificial inoculation. The
<i>Roq1</i>
gene can therefore be used to provide safe, economical, and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.</AbstractText>
<CopyrightInformation>Copyright © 2020 Thomas, Hendrich, Gill, Allen, Hutton and Schultink.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Nicholas C</ForeName>
<Initials>NC</Initials>
<AffiliationInfo>
<Affiliation>Fortiphyte Inc., Berkeley, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hendrich</LastName>
<ForeName>Connor G</ForeName>
<Initials>CG</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gill</LastName>
<ForeName>Upinder S</ForeName>
<Initials>US</Initials>
<AffiliationInfo>
<Affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>Caitilyn</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hutton</LastName>
<ForeName>Samuel F</ForeName>
<Initials>SF</Initials>
<AffiliationInfo>
<Affiliation>IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schultink</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Fortiphyte Inc., Berkeley, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pseudomonas</Keyword>
<Keyword MajorTopicYN="N">Ralstonia</Keyword>
<Keyword MajorTopicYN="N">Xanthomonas</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">tomato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32391034</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00463</ArticleId>
<ArticleId IdType="pmc">PMC7192161</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Sci. 2019 Feb;279:3-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30709490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 05;10:418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31024592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Sep;105(4):505-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Dec 2;354(6316):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27934708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2000 Dec;23(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11249017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Dec;16(9):907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2015;30(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25762345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Jul;155(Pt 7):2235-2244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2007 Dec;16(6):771-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17273915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):2062-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Oct;66(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Jul;35(7):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24946686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 06;6(1):e15853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):742-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Sep;20(9):1237-1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31218811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Dec;18(12):1306-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):2049-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2017 Oct 5;5(40):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28983002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Feb;12(1):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 May;9(5):344-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Nov;193(21):6088-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Feb 17;369(1639):20130087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24535396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Jun 03;6:535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Oct 23;10(10):e1004655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25340333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(1):32-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Dec 06;14:859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:425-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Dec;108(12):1402-1411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29923802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10979-E10987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2015 Feb;32:114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):585-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24124900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2019 Aug 6;7:e7346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31579561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Dec;92(5):787-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28891100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14153-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2014 Sep;64(Pt 9):3087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24944341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jan;77(2):297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):343-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 May;16(5):316-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Nov;17(11):644-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2016 Oct;100(10):2126-2133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30682998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2012 Jul;96(7):973-978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1017-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2007 Jan;91(1):4-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30781059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Dakota du Nord</li>
<li>Floride</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Thomas, Nicholas C" sort="Thomas, Nicholas C" uniqKey="Thomas N" first="Nicholas C" last="Thomas">Nicholas C. Thomas</name>
</region>
<name sortKey="Allen, Caitilyn" sort="Allen, Caitilyn" uniqKey="Allen C" first="Caitilyn" last="Allen">Caitilyn Allen</name>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<name sortKey="Gill, Upinder S" sort="Gill, Upinder S" uniqKey="Gill U" first="Upinder S" last="Gill">Upinder S. Gill</name>
<name sortKey="Hendrich, Connor G" sort="Hendrich, Connor G" uniqKey="Hendrich C" first="Connor G" last="Hendrich">Connor G. Hendrich</name>
<name sortKey="Hutton, Samuel F" sort="Hutton, Samuel F" uniqKey="Hutton S" first="Samuel F" last="Hutton">Samuel F. Hutton</name>
<name sortKey="Schultink, Alex" sort="Schultink, Alex" uniqKey="Schultink A" first="Alex" last="Schultink">Alex Schultink</name>
<name sortKey="Schultink, Alex" sort="Schultink, Alex" uniqKey="Schultink A" first="Alex" last="Schultink">Alex Schultink</name>
<name sortKey="Thomas, Nicholas C" sort="Thomas, Nicholas C" uniqKey="Thomas N" first="Nicholas C" last="Thomas">Nicholas C. Thomas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000035 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000035 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32391034
   |texte=   The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32391034" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020